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Topics 

•  Worlds with atmospheres and solid or liquid surfaces.  

•  Types of platform for solar system exploration 

•  In Situ Exploration with lighter-than-air vehicles 

•  Lighter than air vehicles for exploring  
–  Mars 
–  Venus 
–  Titan  

•  Major Challenges 

•  Conclusions 
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Venus Visible Image 
Mariner 10 

Venus Radar Image 
Mariner 10 

Venus and Earth 
 Worlds with atmospheres and solid or liquid surfaces 
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Earth, Titan and Mars:  
Worlds with atmospheres and solid or liquid surfaces 
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Atmospheric Environments of Venus,  Titan and Mars? 

Parameter Units Earth Venus Titan Mars 

Temperature K 290 750 90 155 - 300 

Pressure Bars 1 90 1.5 0.006 

Density kg/m^3 1.23 65 5.5 0.010 
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Planetary Exploration – Types of Exploration Platform 

Flyby Missions 
1962 – Present 

 
Orbiter Missions 
1971 – Present 

 
Descent Probe & 
Lander Missions 
1972 – Present 

 

Rover  Missions 
2004 – Present 

 

In Situ Exploration 
Platforms 

Spacecraft 
Platforms 

Fixed 
Site 

Surface 
Mobile 

Aerial 
Mobile 
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Concept for Mars Superpressure Balloon - 1998 
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Aerial Inflation of a Mars Balloon 
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Mars Superpressure Balloons: Technology Alternatives 

 

Pumpkin Balloon	
 Spherical Balloon	


•  Polyethylene film and PBO tendons 	

•  Tendon reinforcement along each gore	

•  Tendons carry most of the superpressure 
load allowing for thinner balloon films	

•  Tendons carry most of the deployment 
shock loads	


• Mylar film with taped seams	

•  Extra thick end caps and 	

•  No other reinforcement	


Supported by NASA’s Mars Technology 
Program  
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Prototype Mars Superpressure Balloon  
Deployment Test in Stratosphere (2006)- Spherical Balloon 

Deployment and inflation a complete success. However, 
no attempt to separate the balloon after inflation.  
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Prototype Mars Superpressure Balloon  
Deployment Test in Stratosphere (2006)- Pumpkin Balloon 

Parachute failed to fully deploy causing dynamic 
pressure on the  balloon during inflation to be more than 

double the planned value (12 Pa vs 6.5 Pa).   
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Mars Superpressure Balloon:  Pathway to Flight Readiness 

•  An end-to-end demonstration of deployment, inflation and float in 
the stratosphere is still needed. 

•  Two more flight tests of the superpressure balloon are planned for 
June 27 and June 29 2007 
–  A 12 m diameter sphere (900 m3, 70% larger volume than 2006) – 

providing 5kg payload capability at Mars. 
–  A 660 m3 pumpkin (15% larger volume than 2006) 
–  Both tests will include parachute and inflation system separation and 

subsequent balloon float 

•  No further superpressure balloon tests are currently funded  

If successful, the June stratospheric deployment tests will retire 
most of the risks associated with sustained flight of payloads of 

a few kgs for focused science objectives on Mars 
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Mars Solar Montgolfiere Balloon:  Tropospheric Tests 

These tropospheric tests have established the principle of 
altitude control with a vent at the top of the balloon.  
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Mars Solar Montgolfiere Balloon:  Stratospheric Tests 

Helium Lift 
Balloon

Drop parachute

Stowed Montgolfiere
Balloon

Payload: GPS system, radio 
transmitter, weather 
transponder.

Helium Lift 
Balloon

Drop parachute

Stowed Montgolfiere
Balloon

Payload: GPS system, radio 
transmitter, weather 
transponder.

•   Several Earth stratospheric deployments have been conducted. 

•   Several tests with a 15-m diameter balloon have been successful 

•   A 30-m test is pending in July, 2007. 
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Venus Environment 

Earth Surface like 
VeGa 

High Altitude Sounder 

Mid Troposphere Balloon – 
 Including Phase Change Balloons 

Venus Mobile Explorer Venus Surface Sample Return 
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Venus High Altitude Balloons 
VEGA Mission, 1985 – Earth Test Flight 
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Recent Venus Superpressure Balloon Development 
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Venus High Altitude Balloon - Finite Element Modeling 
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Venus Mid Troposphere Balloon 

•  Target altitude is ~20km where temperature is ~250C, pressure 15 
bars.  
–  Measurements there may be key to unraveling the mystery of Venus 

superrotation.  

•  High temperature electronics for <300C is available 
–  CMOS compatible Silicon on Insulator (SOI) MESFETS ( see paper by 

Ervin et al, IPPW4) 

•  Balloon materials demonstrated at 300K with adequate strength for 
superpressure balloon Yavrouian et al, 1999  
–   Kapton FN – coextruded combination of Kapton and Teflon 
–  Polybenzoxazole film is an alternative 

•  Proof of principle of phase change balloons demonstrated at JPL 
in the ALICE program in 1990s with refrigerants. Need to validate 
with water or ammonia balloons at Venus temperatures 
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Venus Mobile Explorer – Exploring the Surface of Venus 
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Technology for near surface operations on Venus 

High temperature electronics 

Pressure vessel & insulation 

Metal bellows 
buoyancy device 
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Venus Surface Sample Return  
Bringing a sample from the Venus Surface back to Earth 
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Venus Surface Sample Return 

Dual Balloon Concept  
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Venus Dual Balloon concept, Kerzhanovich et al IPPW4 
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Venus Aerobots: Path to Flight Readiness 

•  Next step is a superpressure balloon flying in the same regime as 
the VeGa balloons 
–  Large and more sophisticated payload than VEGA 
–  Longer duration flight with multiple circumnavigation 
–  Technology is ready 
 

•  Technologies for the extreme environments of Venus – discussed at 
IPPW4 – are critical to all further scenarios and there are many 
interrelationships and feed forward opportunities.  

•  Next step will depend on not only technology readiness but the 
value of the science that the mission can yield.  

•  Venus Mobile Explorer which can open up the surface of Venus to 
detailed in situ exploration may be a major driver for future 
development.  

•  Venus Surface Sample Return is impossible without a balloon 
capability that can provide transit from the surface to ~65km 

Note 1  Relative to these platforms used on a Mars mission  
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Titan Environments 

Pr
es

su
re

, b
ar

s 

Aerial Platform  
Operating Range 
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Spectacular landforms 
are seen from the 
descending probe 

Aerial imaging from 
descending Huygens 
probe reveals that in the  
lower atmosphere: 
•  It is cloud free 
•  Winds are light 
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Titan Aerobot Architectures 

Montgolfiere (Hot air) Balloon 

Wind-driven Self-propelled 

Self-propelled Blimp 



28 

Titan – The Ideal Environment for Lighter than air flight 

Julian Nott, Titan the Ultimate Destination for 
Aerobots, IPPW4 Proceedings, 2006 
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Envelope Material Development  

Gelbo Flex Test of 
Polyester composite film      

2000 cycles at 90K  

 
Blimp Hull at Cryogenic Temperatures.  

Hall et al, Proceedings of COSPAR, 2004 
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Dual Propellers 
(optional) 

RTGs 

Payload 

Antenna 
(Optional) 

Titan Montgolfiere aerobot - thermal modeling 

RTG 

g 
D 
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Simulation with Control Interface GUI 

Aerobot Aerodynamic Model/Simulator 

AS800B Airship Simulation 

Paper by Elfes et al at this meeting IPPW 5 
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Aerial Platforms at Titan 

•  Titan is in many respects the ideal environment for surface 
exploration with a lighter-than-air vehicle 
–  Dense and cold high molecular weight atmosphere 
–  Little diurnal temperature variation and almost no UV radiation 
–  Clear skies beneath the clouds and light winds at the surface 

•   A Titan aerobot can acquire:  
–  Imaging and remote sensing surveys over a global traverse at  

resolutions ranging from meters to centimeters.  
–  In situ sampling from a great diversity of terrains ranging from organic 

dunes, to cryovolcanic features to methane lakes.  

•  Although the principles of Titan aerobot operation are established, 
the practice is a long way from validation: 
–  Significant investment in the aerial vehicle technology, instruments and 

cryo sampling methods  
–  End-to-end simulations of aerobot deployment & operation & where 

feasible actual validation in cryogenic environments.   
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Summary 

•  Mars 
–  Scientifically, aerobots occupy a niche role complementing the science that can 

be done with orbiters and surface rovers.  
–  Superpressure balloons technology, capable of carrying payloads of a ~5 kg for 

mission durations of months is now within reach.  
–  Solar Montgolfiere balloons with larger payloads but capable of long duration 

flight only in the summer polar regions may soon be demonstrated.  

•  Venus .   
–  Scientifically, lighter-than-air technology must play a central role in the future in 

situ exploration and surface sample  return from Venus. 
–  Superpressure balloon technology for payloads of tens of kgs. over flight times of 

weeks to months at altitudes of 54-56 km is at hand. 
–  Metallic bellows balloon technology can enable long duration mobile exploration 

of the Venus surface and ultimately Venus surface sample return.  

•  Titan:  
–  Scientifically, a Titan aerobot provides the ability to carry out both remote 

sensing from beneath the Titan clouds and haze and mobile in situ sampling 
for a diverse range of terrains from organic dunes to methane lakes.  

–  Radioisotope Montgolfiere technology offers the potential for long duration 
(years) operations for altitudes from 0 to 10 km with controlled surface sampling. 

–  While the principles of Titan aerobot operation are established, the technology 
validation sufficient for commitment to a Flagship mission is still needed.    
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